About MedWOW

MedWOW is THE multilingual online marketplace for trading medical equipment and connecting buyers and sellers globally.

Hundreds of thousands of complete systems, parts, accessories, and medical supplies are posted for sale and auction!

The user-friendly, international website connects buyers, sellers and service providers of medical equipment from all over the world by offering: comprehensive professional services, unprecedented reliability, multilingual customer support and top value.
Showing posts with label Ultrasound Scanner. Show all posts
Showing posts with label Ultrasound Scanner. Show all posts

Great Tips for Ultrasound Buyers

Although Ultrasounds are cost effective imaging devices, standard to all medical facilities, in light of current worldwide economic conditions and growing financial pressure on medical facilities, finding ways of saving money and increasing value of Ultrasound Equipment is a relevant issue for Equipment Buyers. This article shares helpful tips for purchasing Ultrasound Equipment.

New Technologies: Diagnoses Using Cell Phones



Created initially to make wireless verbal and then digital communication available to everyone, now cell phones are being used for everything from watching movies to social networking to ordering food and movie tickets and even shopping. The application potentials are limitless and now even medical applications have jumped on the cell phone bandwagon. This means that similar to telemedicine, smart phones can relay important information from remote locations to medical specialists.

For example, frequently occurring, potentially life-threatening conditions such as apnea and pneumothorax can be easily ruled out by performing an ultrasound that visualizes a respiratory motion known as lung sliding. Institutions from around the world collaborated on a study that assessed how economically and practically this information could be obtained remotely over a cellular network. 1

In this study, remote expert sonographers taught remote providers with little to no ultrasound experience how to obtain the images needed to rule out apnea and pneumothorax. Through the use of handheld ultrasound units streaming images via Skype services on an iPhone, examinations were conducted between a series of remote sites and a base station. These included: two remote on-mountain sites, a small airplane in flight, and a Calgary household, with base sites located in Pisa, Rome, Philadelphia, and Calgary.

In every example, lung sliding could easily and quickly be seen. Furthermore, the respiratory motion was easily substantiated and documented through capture of color-power Doppler and M-mode images. Other ultrasound applications, such as the Focused Assessment with Sonography for Trauma examination, vascular anatomy, and a fetal wellness assessment were also demonstrated.

In another study, conducted in South Korea, a team of scientists from the Korea Advanced Institute of Science of Technology2 demonstrated that touch screen technology can be used to detect biomolecular matter, in a similar way that standard medical tests are now conducted. Rather than spending hours waiting in lines at clinics and hospitals for tests, based on the idea that touch screens work by recognizing electronic signs based on the touch of a finger; the presence of DNA and particular proteins should be recognizable, as well.

Biochemicals, including proteins and DNA molecules, carry specific electronic charges and touch screens on smart phones work by sensing the electronic charges from the user's body on the screen. The Korean team’s experiments showed that touch screens can recognize the existence and the concentration of DNA molecules placed on them. They confirmed that touch screens are able to recognize DNA molecules with nearly 100 per cent accuracy just as large, conventional medical equipment can.

Eventually, the hope is that the touch screen will be able to identify bacteria or other disease from fluids as diverse as sputum, blood, saliva or even urine. And if along the way, researchers can find ways to overcome interference from things like sweat, moisture, etc., they'll be on the road to a whole new method of mobile diagnostics. Since putting blood or urine on a touch screen is undesirable, the sample would be placed on a strip, which would then be fed into the phone or a module attached to the phone through a designated entrance point.

1. “Simple, Almost Anywhere, With Almost Anyone: Remote Low-Cost Telementored Resuscitative Lung Ultrasound” The Journal of Trauma – December 2011

2. Dr Hyun-gyu Park and Dr Byongyeon Won - Korea Advanced Institute of Science of Technology - Angewandte Chemie Journal - January 2012


Uses for Ultrasound Elastography

Ultrasound elastography is based on the comparison of ultrasound images, when the tissue is forcefully compressed. The principle behind ultrasound elastography is to characterize the soft biological tissues using the latest ultrasound technology to obtain a sequence of images which are processed for the ultrasound elastography.

In the first step, motion estimation between two or more images is processed. The estimated displacement offers the possibility of obtaining detailed bend elastograms (images of tissue strain). A tumor or a suspicious cancerous growth is normally 5-28 times stiffer than the background of normal soft tissue. When a mechanical compression or vibration is applied, the tumor deforms less than the surrounding tissue. Therefore, the presence of a hard inclusion simulating a tumor of pathological tissue, within a phantom mimicking soft tissue, can be more easily identified which likely leads to an earlier cancer diagnosis. Elastograms have been shown to be affected by the degree of adherence of the tumor to its surroundings, indicating a potential to broaden elastography usage to tumor mobility characterization to improve diagnostic accuracy and surgical guidance.

Ultrasonic imaging is the most common medical imaging technique for producing elastograms. Investigations have been conducted using magnetic resonance elastography (MRE) and computed tomography. Nevertheless, ultrasound elastography has the advantages of being cheaper, faster and more portable than other imaging techniques.

Ultrasound elastography has become an efficient and easy-to-perform component of the breast ultrasound examination as tissue stiffness determinations of various types have been included in a number of high-resolution linear transducers.


Ultrasound elastography imaging performed during breast ultrasound is extremely helpful in evaluating breast lesions and selecting patients who need a biopsy, according to current research. It is non-invasive, it is quick and there is no radiation involved. Ultrasound elastography helps distinguish between cancerous and benign breast lesions, which reduce unnecessary biopsies. The technique involves pressing on the breast with an ultrasound probe to measure the firmness or resistance of the underlying tissue. Diagnostic ultrasound elastography can be performed at the same time as hand-held ultrasound and images can be viewed on a split screen, with the two-dimensional ultrasound image on the left and the ultrasound elastography image on the right. A cancerous area will be stiffer than the surrounding tissue, as determined by the ultrasound elastography. Using ultrasound elastography helps reduce unnecessary biopsies, as well as catching early cancers that may not have been otherwise detected.

MedWOW, the multilingual, global medical equipment portal specializes in providing a safe and secure environment for key players in the industry to conduct trade, as well as procuring support services.

MedWOW currently represents more than 3, 300 complete diagnostic ultrasound systems in inventory, as well as nearly 9,000 parts and accessories. These ultrasound units, when paired with simple add-on elastography units, can provide medical facilities with an excellent diagnostic tool. It is also possible to post a buying request on MedWOW’s to search for a new or used dedicated ultrasound elastography unit.

Be Safe When Using Diagnostic Ultrasound

Diagnostic ultrasound is a safe and secure method of examining the internal organs, while avoiding the use of radiation. Instead, high-frequency sound waves are generated and the echoes that result from their bouncing off soft tissue structures can be used to measure size, to detect structural abnormalities, to determine whether a lump is solid or fluid-filled or to monitor growth of a fetus during pregnancy.

One of the reasons diagnostic ultrasound is gaining in popular usage as an imaging technology is because it is very safe in comparison with other techniques, such as x-ray imaging. This doesn’t mean, however, that diagnostic ultrasound doesn’t have some hazards if improperly used. The danger of diagnostic ultrasound, if any, seems not so much to be from misuse but from overuse. As is the case with many other things too much of a good thing is not a good idea!

The type of imaging that is utilized in diagnostic ultrasound is used much of the time to try to identify problems or to pinpoint potential problems. Diagnostic ultrasound is very commonly used to determine the sex of unborn babies and the term “diagnostic ultrasound” invokes images of fetal pictures and growing babies. But diagnostic ultrasound systems have many other features, including precision and delicacy when operating on eyes to emulsify cataracts to make way for lens implants. Diagnostic ultrasound is also used to explore and monitor the entire human physical organism. No matter what diagnostic ultrasound is being used for, there is one common rule – the safety of the patient comes first.


Even though diagnostic ultrasound is so universally used, there is still some debate and even controversy about whether it is completely safe. Diagnostic ultrasound studies on laboratory mice have shown some cellular effects, such as slowed cell division and increased cell death, shown to be linked with prolonged usage of diagnostic ultrasound.


A few other diagnostic ultrasound studies have found associations between large amounts of diagnostic ultrasound and decreased birth weight, although the majority of studies have found that there are no negative correlations associated with diagnostic ultrasound and that there are no ill effects from safe and more sensible usage.


In fact, The World Health Organization recognizes diagnostic ultrasound as generally safe and recommends its use. To quote them: “Diagnostic ultrasound is recognized as a safe, effective, and highly flexible imaging modality capable of providing clinically relevant information about most parts of the body in a rapid and cost-effective fashion.”


Some sources are far more confrontational about the entire diagnostic ultrasound issue than others. Many dismiss the claims that diagnostic ultrasound is dangerous as an overreaction with no research to back it up, while others assert that the information generally disclosed in the industry is not 100% truthful and thorough, and that there are indeed significant dangers associated with diagnostic ultrasound. Therefore, it is difficult to ascertain that it is 100% safe and should be used with caution.


A good rule of thumb seems to be that especially when concerning prenatal diagnostic ultrasound, it should only be undertaken when really necessary, and only by well- trained professionals. It has become very popular to use diagnostic ultrasound in order to simply take pictures of the unborn baby or determine whether it is a boy or a girl. This practice, and repeated diagnostic ultrasound when there are no problems that clearly need diagnosis or monitoring, should be discouraged. It is better to be on the safe side with this and any other medical procedure, even if there is only a small amount of doubt about the safety of diagnostic ultrasound.

Obstetric Ultrasound Scanners Explained

Obstetric ultrasound scanning is an ultrasound imaging method designed to be used to augment physical examinations in the course of prenatal care. There are a large variety of uses for obstetric ultrasound, and this procedure has become a routine part of prenatal care for many women, especially women throughout Europe and North America. It has become quite common for parents to request print-outs of the images of their growing infant and the technician frequently prints out pictures for them to see and explains the fetus’s configuration as seen on screen to the parents, during the course of the obstetric ultrasound scan.

In obstetric ultrasound imaging, high-frequency sound waves are bounced off the body to create an accurate image of the inside of the uterus. Very high frequency sound waves of between 3.5 to 7.0 megahertz (3.5 to 7 million cycles per second) are normally used for this purpose. This is achieved by using a transducer which emanates waves and generates an image based on the length of the response time and the changes in frequency. The obstetric ultrasound results created can be either a still or moving image, with advanced technology being implemented to create three-dimensional ultrasound images which provide even more specific details. The obstetric ultrasound image may be acquired by covering the woman’s abdomen in a conductive gel and running the transducer along the belly, or by inserting the transducer into the vaginal canal to get a clearer image, which is known as a transvaginal ultrasound. The resulting image gives a picture of the uterus and its contents, along with adjacent body structures. These measurements outline the foundation in the assessment of gestational age, size and growth in the fetus. A full bladder is often compulsory for the procedure when abdominal scanning is done in the early stages of pregnancy. There may be some discomfort from pressure on the full bladder.

There are a wide variety of uses for obstetric ultrasound. Obstetric ultrasound imaging is customarily used to evaluate a pregnancy. This may include determining how far along the pregnancy is and confirming that the fetus is developing normally. Movements such as fetal heart beat and abnormalities in the fetus can be appraised and measurements can be made accurately based on the images displayed on the monitor. An ultrasound can also be used specifically to check for fetal malformations or problems, including a detached placenta. If a mother comes with pregnancy complications indicating fetal distress, obstetric ultrasound may be used as a diagnostic tool to check on the status of the baby without having to use invasive techniques which could jeopardize the pregnancy.

As there are various obstetric applications, different types of obstetric ultrasound probes are required, depending on which is indicated. If an obstetric ultrasound scanner model has fixed probes, then it may only be suitable for a limited subset of applications. For this reason, it is common for ultrasound systems to have interchangeable probes, and they frequently have more than one probe connection socket for the different applications.